Как процент делить на

Содержание
  1. 5 способов посчитать проценты от суммы с калькулятором и без
  2. 1. Как посчитать проценты, разделив число на 100
  3. Пример 1
  4. Пример 2
  5. 2. Как посчитать проценты, разделив число на 10
  6. Пример
  7. 3. Как посчитать проценты, составив пропорцию
  8. 4. Как посчитать проценты с помощью соотношений
  9. 5. Как посчитать проценты с помощью калькулятора
  10. Как посчитать проценты: от числа, от суммы чисел и др. [в уме, на калькуляторе и с помощью Excel]
  11. Проценты
  12. Что такое процент?
  13. Как найти процент?
  14. Второй способ нахождения процента
  15. Нахождения числа по его проценту
  16. Задания для самостоятельного решения
  17. Как делить проценты от суммы
  18. Примеры вычислений на калькуляторе процентов
  19. Вариант 1: расчет простых чисел в уме за 2-3 сек
  20. Вариант 2: используем калькулятор телефона на Андроид
  21. 6 способов посчитать проценты от суммы с калькулятором и без
  22. Пример 1
  23. Пример 2
  24. Пример
  25. 6. Как посчитать проценты с помощью онлайн-сервисов
  26. Planetcalc
  27. Калькулятор — справочный портал
  28. Allcalc
  29. Что такое процент? Формула процентов. Проценты – как считать?
  30. Понятие процента
  31. Перевод дробей в проценты
  32. Перевод процентов в дроби
  33. Формула подсчета процента от числа
  34. Формула подсчета числа от процента
  35. Увеличение, уменьшение числа на заданное количество процентов
  36. Пропорция
  37. Многократное изменение числа на некоторое количество процентов
  38. Примеры задач на проценты
  39. Немного экономики
  40. Заключение

5 способов посчитать проценты от суммы с калькулятором и без

Как процент делить на

Простейшие формулы помогут узнать, выгодны ли скидки, и не нарушить пропорцию классного рецепта.

1. Как посчитать проценты, разделив число на 100

Так вы найдёте числовой эквивалент 1%. Дальше всё зависит от вашей цели. Чтобы посчитать проценты от суммы, умножьте их на размер 1%. Чтобы перевести число в проценты, разделите его на размер 1%.

Пример 1

Вы заходите в супермаркет и видите акцию на кофе. Его обычная цена — 458 рублей, сейчас действует скидка 7%. Но у вас есть карта магазина, и по ней пачка обойдётся в 417 рублей.

Чтобы понять, какой вариант выгоднее, надо перевести 7% в рубли.

Разделите 458 на 100. Для этого нужно просто сместить запятую, отделяющую целую часть числа от дробной, на две позиции влево. 1% равен 4,58 рубля.

Умножьте 4,58 на 7, и вы получите 32,06 рубля.

Теперь остаётся отнять от обычной цены 32,06 рубля. По акции кофе обойдётся в 425,94 рубля. Значит, выгоднее купить его по карте.

Пример 2

Вы видите, что игра в Steam стоит 1 000 рублей, хотя раньше продавалась за 1 500 рублей. Вам интересно, сколько процентов составила скидка.

Разделите 1 500 на 100. Сместив запятую на две позиции влево, вы получите 15. Это 1% от старой цены.

Теперь новую цену разделите на размер 1%. 1 000 / 15 = 66,6666%.

100% – 66,6666% = 33,3333%.Такую скидку предоставил магазин.

2. Как посчитать проценты, разделив число на 10

Этот способ похож на предыдущий, но считать с его помощью гораздо быстрее. Но только если речь идёт о процентах, кратных пяти.

Сначала вы находите размер 10%, а потом делите или умножаете его, чтобы получить нужное количество процентов.

Пример

Допустим, вы кладёте на депозит 530 тысяч рублей на 12 месяцев. Процентная ставка составляет 5%, капитализации не предусмотрено. Вы хотите узнать, сколько денег заберёте через год.

В первую очередь надо вычислить 10% от суммы. Разделите её на 10, передвинув запятую влево на один знак. Вы получите 53 тысячи.

Чтобы узнать, сколько составляют 5%, разделите результат на 2. Это 26,5 тысячи.

Если бы в примере речь шла о 30%, нужно было бы умножить 53 на 3. Для расчёта 25% пришлось бы умножить 53 на 2 и прибавить 26,5.

В любом случае такими крупными числами оперировать довольно просто.

3. Как посчитать проценты, составив пропорцию

Составлять пропорции — одно из наиболее полезных умений, которому вас научили в школе. С его помощью можно посчитать любые проценты. Выглядит пропорция так:

сумма, составляющая 100% : 100% = часть суммы : доля в процентном соотношении.

Или можно записать её так: a : b = c : d.

Обычно пропорция читается как «а относится к b так же, как с относится к d». Произведение крайних членов пропорции равно произведению её средних членов. Чтобы узнать неизвестное число из этого равенства, нужно решить простейшее уравнение.

4. Как посчитать проценты с помощью соотношений

В некоторых случаях можно воспользоваться простыми дробями. Например, 10% — это 1/10 числа. И чтобы узнать, сколько это будет в цифрах, достаточно разделить целое на 10.

  • 20% — 1/5, то есть нужно делить число на 5;
  • 25% — 1/4;
  • 50% — 1/2;
  • 12,5% — 1/8;
  • 75% — это 3/4. Значит, придётся разделить число на 4 и умножить на 3.

5. Как посчитать проценты с помощью калькулятора

Если без калькулятора вам жизнь не мила, все вычисления можно делать с его помощью. А можно поступить ещё проще.

  • Чтобы посчитать проценты от суммы, введите число, равное 100%, знак умножения, затем нужный процент и знак %. Для примера с кофе вычисления будут выглядеть так: 458 × 7%.
  • Чтобы узнать сумму за вычетом процентов, введите число, равное 100%, минус, размер процентной доли и знак %: 458 – 7%.
  • Аналогично можно складывать, как в примере с депозитом: 530 000 + 5%.

Источник: https://zen.yandex.ru/media/id/5a9c5606610493c0b113c91d/5-sposobov-poschitat-procenty-ot-summy-s-kalkuliatorom-i-bez-5c8825c9d92ee700b306f3f9

Как посчитать проценты: от числа, от суммы чисел и др. [в уме, на калькуляторе и с помощью Excel]

Как процент делить на

Доброго времени суток!

Проценты, скажу я вам, это не только что-то “скучное” на уроках математики в школе, но еще и архи-нужная и прикладная вещь в жизни

Источник: https://ocomp.info/kak-poschitat-protsentyi.html

Проценты

Как процент делить на

Процент это один из интересных и часто применяемых на практике инструментов. Проценты частично или полностью применяются в любой науке, на любой работе и даже в повседневном общении. Человек, хорошо разбирающийся в процентах, создаёт впечатление умного и образованного. В данном уроке мы узнаем, что такое процент и какие действия можно с ним выполнять.

Что такое процент?

В повседневной жизни дроби   встречаются наиболее часто. Они даже получили свои названия: половина, треть и четверть соответственно.

Но есть ещё одна дробь, которая тоже встречается часто. Это дробь (одна сотая). Данная дробь получила название процент. А что означает дробь одна сотая ? Эта дробь означает, что чего-либо разделено на сто частей и оттуда взята одна часть. Значит процентом является одна сотая часть чего-либо.

Процентом называется одна сотая часть чего-либо

Например,  от одного метра составляет 1 см. Один метр разделили на сто частей, и взяли одну часть (вспоминаем, что 1 метр это 100 см). А одна часть из этих ста частей составляет 1 см. Значит один процент от одного метра составляет 1 см.

от одного метра уже составляет 2 сантиметра. В этот раз один метр разделили на сто частей и взяли оттуда не одну, а две части. А две части из ста составляют два сантиметра. Значит два процента от одного метра составляет 2 сантиметра.

Еще пример,   от одного рубля составляет одну копейку. Рубль разделили на сто частей, и взяли оттуда одну часть. А одна часть из этих ста частей составляет одну копейку. Значит один процент от одного рубля составляет одну копейку.

Проценты встречались настолько часто, что люди заменили дробь  на специальный значок, который выглядит следующим образом:

Эта запись читается как «один процент». Она заменяет собой дробь  . Также она заменяет собой десятичную дробь 0,01 потому что если перевести обычную дробь    в десятичную дробь, то мы получим 0,01. Стало быть между этими тремя выражениями можно поставить знак равенства:

1% =  = 0,01

Два процента в дробном виде будут записаны как  , в виде десятичной дроби как 0,02 а с помощью специального значка два процента записывается как 2%.

2% =  = 0,02

Как найти процент?

Принцип нахождения процента такой же, как и обычное нахождение дроби от числа. Чтобы найти процент от чего-либо, нужно это чего-либо разделить на 100 частей и полученное число умножить на нужный процент.

Например, найти 2% от 10 см.

Что означает запись 2% ? Запись 2% заменяет собой запись . Если перевести это задание на более понятый язык, то оно будет выглядеть следующим образом:

Найти    от 10 см

А как решать подобные задания мы уже знаем. Это обычное нахождение дроби от числа. Чтобы найти дробь от числа, нужно это число разделить на знаменатель дроби, и полученный результат умножить на числитель дроби.

Итак, делим число 10 на знаменатель дроби 

Получили 0,1. Теперь 0,1 умножаем на числитель дроби 

0,1 × 2 = 0,2

Получили ответ 0,2. Значит 2% от 10 см составляет 0,2 см. А если перевести 0,2 сантиметра в миллиметры, то получим 2 миллиметра:

0,2 см = 2 мм

Значит 2% от 10 см составляют 2 мм.

Пример 2. Найти 50% от 300 рублей.

Чтобы найти 50% от 300 рублей, нужно эти 300 рублей разделить на 100, и полученный результат умножить на 50.

Итак, делим 300 рублей на 100

300 : 100 = 3

Теперь полученный результат умножаем на 50

3 × 50 = 150 руб.

Значит 50% от 300 рублей составляет 150 рублей.

Если на первых порах сложно привыкнуть к записи со значком %, можно заменять эту запись на обычную дробную запись.

Например, те же 50% можно заменить на запись  . Тогда задание будет выглядеть так: Найти  от 300 рублей, а решать такие задачи для нас пока проще

300 : 100 = 3

3 × 50 = 150

В принципе, ничего сложного здесь нет. Если возникают сложности, советуем остановиться и заново изучить дроби и как их можно применять.

Пример 3. Швейная фабрика выпустила 1200 костюмов. Из них 32% составляют костюмы нового фасона. Сколько костюмов нового фасона выпустила фабрика?

Здесь нужно найти 32% от 1200. Найденное число будет ответом к задаче. Воспользуемся правилом нахождения процента. Разделим 1200 на 100 и полученный результат умножим на искомый процент, т.е. на 32

1200 : 100 = 12

12 × 32 = 384

Ответ: 384 костюмов нового фасона выпустила фабрика.

Второй способ нахождения процента

Второй способ нахождения процента намного проще и удобнее. Он заключается в том, что число от которого ищется процент сразу умножит на нужный процент, выраженный в виде десятичной дроби.

Например, решим предыдущую задачу этим способом. Найти 50% от 300 рублей.

Запись 50% заменяет собой запись  , а если перевести эти  в десятичную дробь, то мы получим 0,5

Теперь для нахождения 50% от 300, достаточно будет умножить число 300 на десятичную дробь 0,5

300 × 0,5 = 150

Кстати, по этому же принципу работает механизм нахождения процента на калькуляторах. Чтобы найти процент с помощью калькулятора, нужно ввести в калькулятор число от которого ищется процент, затем нажать клавишу умножения и ввести искомый процент. Затем нажать клавишу процента %

Нахождения числа по его проценту

Зная процент от числа, можно узнать всё число. Например, предприятие выплатило нам 60000 рублей за работу, и это составляет 2% от общей прибыли, полученной предприятием. Зная свою долю, и сколько процентов она составляет, мы можем узнать общую прибыль.

Сначала нужно узнать сколько рублей составляет один процент. Как это сделать? Попробуйте догадаться внимательно изучив следующий рисунок:

Если два процента от общей прибыли составляют 60 тысяч рублей, то нетрудно догадаться, что один процент составляет 30 тысяч рублей. А чтобы получить эти 30 тысяч рублей, нужно 60 тысяч разделить на 2

60 000 : 2 = 30 000

Мы нашли один процент от общей прибыли, т.е. . Если одна часть это 30 тысяч, то для определения ста частей, нужно 30 тысяч умножить на 100

30 000 × 100 = 3 000 000

Мы нашли общую прибыль. Она составляет три миллиона.

Попробуем сформировать правило нахождения числа по его проценту.

Чтобы найти число по его проценту, нужно известное число разделить на данный процент, и полученный результат умножить на 100.

Пример 2. Число 35 это 7% от какого-то неизвестного числа. Найти это неизвестное число.

Читаем первую часть правила:

Чтобы найти число по его проценту, нужно известное число разделить на данный процент

У нас известное число это 35, а данный процент это 7. Разделим 35 на 7

35 : 7 = 5

Читаем вторую часть правила:

и полученный результат умножить на 100

У нас полученный результат это число 5. Умножим 5 на 100

5 × 100 = 500

500 это неизвестное число, которое требовалось найти. Можно сделать проверку. Для этого находим 7% от 500. Если мы всё сделали правильно, то должны получить 35

500 : 100 = 5

5 × 7 = 35

Получили 35. Значит задача была решена правильно.

Принцип нахождения числа по его проценту такой же, как и обычное нахождение целого числа по его дроби. Если проценты на первых порах смущают и сбивают с толку, то запись с процентом можно заменять на дробную запись.

Например, предыдущая задача может быть изложена так: число 35 это от какого-то неизвестного числа. Найти это неизвестное число. Как решать такие задачи мы уже знаем. Это нахождение числа по дроби.

Для нахождения числа по дроби, мы это число делим на числитель дроби и полученный результат умножаем на знаменатель дроби.

В нашем примере число 35 нужно разделить на 7 и полученный результат умножить на 100

35 : 7 = 5

5 × 100 = 500

В будущем мы будем решать задачи на проценты, часть из которых будут сложными. Чтобы на первых порах не усложнять обучение, достаточно уметь находить процент от числа, и число по проценту.

Задания для самостоятельного решения

Задание 2. Найдите 34% от числа 10501050 : 100 = 10,5
10,5 × 34 = 357 Задание 3. Найдите 25% от числа 8080 : 100 = 0,80
0,8 × 25 = 20 Задание 4. Найдите 185% от числа 1,51,5 : 100 = 0,015
0,015 × 185 = 2,775 Задание 5. Найдите 150% от числа 11501150 : 100 = 11,50
11,50 × 150 = 1725 Задание 8.

Представьте выражение 125% в виде обыкновенной дроби Задание 9. Число 12 это 60% от какого-то числа. Найдите это число.12 : 60 = 0,2
0,2 × 100 = 20 Задание 10. Число 40 это 20% от какого-то числа. Найдите это число.

40 : 20 = 2
2 × 100 = 200

Понравился урок?
Вступай в нашу новую группу и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже

Источник: http://spacemath.xyz/procenti/

Как делить проценты от суммы

Как процент делить на

› Кредиты

10.04.2021

Используя калькулятор процентов Вы сможете производить всевозможные расчеты с использованием процентов. Округляет результаты до нужного количества знаков после запятой

Сколько процентов составляет число X от числа Y. Какое число соответствует X процентам от числа Y. Прибавление или вычитание процентов из числа.

Калькулятор разработан специально для расчета процентов. Позволяет выполнять разнообразные расчеты при работе с процентами. Функционально состоит из 4-х разных калькуляторов. Примеры вычислений на калькуляторе процентов смотрите ниже.

Калькулятор процентов Добавить в Избранное
Сколько составляет % от числа0% от числа 0 = 0Сколько % составляет число от числаЧисло 0 от числа 0 = 0%Прибавить % к числуПрибавить 0% к числу 0 = 0Вычесть % из числаВычесть 0% из числа 0 = 0Округлять до знаков после запятойСбросить все

Примеры вычислений на калькуляторе процентов

Какое число соответствует 23 % от числа 857 ? Итог — 197.11 Как вычислять: Получаем коэффициент — 857 / 100% = 8.57.

Получаем итоговое число — 8.57 x 23% = 197.11

Сколько процентов составляет 24 от числа 248 ? Итог — 9.677 % Как вычислять: Получаем коэффициент — 248 / 24 = 10.333

Получаем проценты — 100% / 10.333 = 9.677 %

Прибавить 35% к числу 487 ? Итог — 657.45 Как вычислять: Получаем коэффициент — 487 / 100 = 4.87 Получаем число равное 35% — 4.87 x 35 = 170.45

Получаем итоговое число — 170.45 + 487 = 657.45

Вычесть 17% из числа 229 ? Итог — 190.07 Как вычислять: Получаем коэффициент — 229 / 100 = 2.29 Получаем число равное 17% — 2.29 x 17 = 38.93

Получаем итоговое число — 229 — 38.93 = 190.07

Доброго времени суток!

Проценты, скажу я вам, это не только что-то “скучное” на уроках математики в школе, но еще и архи-нужная и прикладная вещь в жизни (встречаемая повсюду: когда берете кредит, открываете депозит, считаете прибыль и т.д.). И на мой взгляд, при изучении темы “процентов” в той же школе — этому уделяется чрезвычайно мало времени ( ).

Возможно, из-за этого, некоторые люди попадают в не очень приятные ситуации (многие из которых можно было бы избежать, если бы вовремя прикинуть что там и как. ).

Собственно, в этой статье хочу разобрать наиболее популярные задачи с процентами, которые как раз встречаются в жизни (разумеется, рассмотрю это как можно на более простом языке с примерами). Ну а предупрежден — значит вооружен (думаю, что знание этой темы позволит многим сэкономить и время, и деньги).

И так, ближе к теме.

Вариант 1: расчет простых чисел в уме за 2-3 сек

В подавляющем большинстве случаев в жизни требуется быстро прикинуть в уме, сколько там это будет скидка в 10% от какого-то числа (например). Согласитесь, чтобы принять решение о покупке, вам ненужно высчитывать все вплоть до копейки (важно прикинуть порядок).

Наиболее распространенные варианты чисел с процентами привел в списке ниже, а также, на что нужно разделить число, чтобы узнать искомую величину.

  • 1% от числа = разделить число на 100 (1% от 200 = 200/100 = 2);
  • 10% от числа = разделить число на 10 (10% от 200 = 200/10 = 20);
  • 25% от числа = разделить число на 4 или два раза на 2 (25% от 200 = 200/4 = 50);
  • 33% от числа ≈ разделить число на 3;
  • 50% от числа = разделить число на 2.

Задачка! Например, вы хотите купить технику за 197 тыс. руб. Магазин делает скидку в 10,99%, если вы выполняете какие-нибудь условия. Как это быстро прикинуть, стоит ли оно того?

Пример решения. Да просто округлить эти пару чисел: вместо 197 взять сумму в 200, вместо 10,99% взять 10% (условно). Итого, нужно-то 200 разделить на 10 — т.е. мы оценили размер скидки, примерно в 20 тыс. руб. (при определенном опыте расчет делается практически на автомате за 2-3 сек.).

Точный расчет : 197*10,99/100 = 21,65 тыс. руб.

Вариант 2: используем калькулятор телефона на Андроид

Когда результат нужен более точный, можно воспользоваться калькулятором на телефоне (в статье ниже приведу скрины с Андроида). Пользоваться им достаточно просто.

Например, вам нужно найти 30% от числа 900. Как это сделать?

Да достаточно просто:

  • открыть калькулятор;
  • написать 30%900 (естественно, процент и число может быть отличными);
  • обратите внимание, что внизу под вашим написанным “уравнением” вы увидите число 270 — это и есть 30% от 900.

Источник: https://ddking.ru/kak-delit-procenty-ot-summy/

6 способов посчитать проценты от суммы с калькулятором и без

Как процент делить на

Так вы найдёте числовой эквивалент 1%. Дальше всё зависит от вашей цели. Чтобы посчитать проценты от суммы, умножьте их на размер 1%. Чтобы перевести число в проценты, разделите его на размер 1%.

Пример 1

Вы заходите в супермаркет и видите акцию на кофе. Его обычная цена — 458 рублей, сейчас действует скидка 7%. Но у вас есть карта магазина, и по ней пачка обойдётся в 417 рублей.

Чтобы понять, какой вариант выгоднее, надо перевести 7% в рубли.

Разделите 458 на 100. Для этого нужно просто сместить запятую, отделяющую целую часть числа от дробной, на две позиции влево. 1% равен 4,58 рубля.

Умножьте 4,58 на 7, и вы получите 32,06 рубля.

Теперь остаётся отнять от обычной цены 32,06 рубля. По акции кофе обойдётся в 425,94 рубля. Значит, выгоднее купить его по карте.

Пример 2

Вы видите, что игра в Steam стоит 1 000 рублей, хотя раньше продавалась за 1 500 рублей. Вам интересно, сколько процентов составила скидка.

Разделите 1 500 на 100. Сместив запятую на две позиции влево, вы получите 15. Это 1% от старой цены.

Теперь новую цену разделите на размер 1%. 1 000 / 15 = 66,6666%.

100% – 66,6666% = 33,3333%.Такую скидку предоставил магазин.

Пример

Допустим, вы кладёте на депозит 530 тысяч рублей на 12 месяцев. Процентная ставка составляет 5%, капитализации не предусмотрено. Вы хотите узнать, сколько денег заберёте через год.

В первую очередь надо вычислить 10% от суммы. Разделите её на 10, передвинув запятую влево на один знак. Вы получите 53 тысячи.

Чтобы узнать, сколько составляют 5%, разделите результат на 2. Это 26,5 тысячи.

Если бы в примере речь шла о 30%, нужно было бы умножить 53 на 3. Для расчёта 25% пришлось бы умножить 53 на 2 и прибавить 26,5.

В любом случае такими крупными числами оперировать довольно просто.

6. Как посчитать проценты с помощью онлайн-сервисов

Не все проценты можно посчитать в уме и даже на калькуляторе. Если речь идёт о доходности вклада, переплатах по ипотеке или налогах, требуются сложные формулы. Они учтены в некоторых онлайн-сервисах.

Planetcalc

На сайте собраны разные калькуляторы, которые высчитывают не только проценты. Здесь есть сервисы для кредиторов, инвесторов, предпринимателей и всех тех, кто не любит считать в уме.

Planetcalc→

Калькулятор — справочный портал

Ещё один сервис с калькуляторами на любой вкус.

Калькулятор — справочный портал→

Allcalc

Каталог онлайн-калькуляторов, 60 из которых предназначены для подсчёта финансов. Можно вычислить налоги и пени, размер субсидии на ЖКУ и многое другое.

Allcalc→

Источник: https://Lifehacker.ru/kak-poschitat-procenty-ot-summy/

Что такое процент? Формула процентов. Проценты – как считать?

Как процент делить на

Сегодня в современном мире без процентов невозможно обойтись. Даже в школе, начиная с 5 класса, дети узнают данное понятие и решают задачи с этой величиной.

Проценты встречаются в любой сфере современных структур. Взять, к примеру, банки: размер переплаты кредита зависит от указанной в договоре величины; на размерность прибыли также влияет процентная ставка.

Поэтому жизненно необходимо знать, что такое процент.

Понятие процента

Согласно одной легенде, процент появился из-за глупой опечатки. Наборщик должен был выставить число 100, но перепутал и поставил так: 010. Это послужило причиной того, что первый ноль немного приподнялся, а второй опустился. Единица превратилась в обратный слеш. Такие манипуляции послужили тому, что появился знак процента. Конечно, есть и другие легенды о происхождении этой величины.

О процентах индусы знали еще в V веке. В Европу же десятичные дроби, с которыми тесно взаимосвязано наше понятие, появились спустя тысячелетие. Впервые в Старом Свете суждение о том, что такое процент, ввел ученый из Бельгии Симон Стевин. В 1584 году была впервые опубликована таблица величин этим же ученым.

Слово «процент» берет свое начало в латинском языке как pro centum. Если перевести словосочетание, то получится «со ста». Итак, под процентом понимается одна сотая часть какой-либо величины, числа. Обозначается эта величина знаком %.

Благодаря процентам появилась возможность сравнивать части одного целого без особого труда. Появление долей значительно упростило расчеты, поэтому они стали столь распространенным явлением.

Перевод дробей в проценты

Чтобы перевести десятичную дробь в проценты, может понадобиться так называемая формула процентов: дробь умножается на 100, к результату приписывается %.

Если нужно перевести в проценты обыкновенную дробь, ее для начала нужно сделать десятичной, а затем воспользоваться вышеуказанной формулой.

Перевод процентов в дроби

Как таковая формула процентов достаточно условна. Но нужно знать, как переводить данную величину в дробное выражение. Чтобы перевести доли (проценты) в десятичные дроби, нужно знак % убрать и разделить показатель на 100.

Формула подсчета процента от числа

За контрольную работу по химии оценку «отлично» получили 30% учащихся. Всего в классе 40 учеников. Сколько учеников написали контрольную работу на “5”? Эта задача наглядно показывает, как узнать процент от числа.

Решение:

1) 40 х 30 = 1200.

2) 1200 : 100 = 12 (учащихся).

Ответ: контрольную работу на “5” написали 12 учащихся.

Можно воспользоваться готовой таблицей, в которой указаны некоторые дроби и проценты, которые им соответсвуют.

Получается, что формула процентов от числа выглядит следующим образом: С = (А∙В)/100, где А – исходное число (в конкретном примере равное 40); В – количество процентов (в данной задаче В=30%); С – искомый результат.

Формула подсчета числа от процента

Следующая задача продемонстрирует, что такое процент и как найти число по проценту.

Швейная фабрика изготовила 1200 платьев, где из них 32% – платья нового фасона. Сколько платьев нового фасона изготовила швейная фабрика?

Решение:

1. 1200 : 100 = 12 (платьев) – 1% от всех выпущенных изделий.

2. 12 х 32 = 384 (платья).

Ответ: фабрика изготовила 384 платья нового фасона.

Если нужно найти число по его проценту, можно воспользоваться следующей формулой: С = (А∙100)/В, где А – общее количество предметов (в данном случае А=1200); В – количество процентов (в конкретной задаче В=32%); С – искомая величина.

Увеличение, уменьшение числа на заданное количество процентов

Школьники должны усвоить, что такое проценты, как считать их и решать разнообразные задачи. Для этого нужно понимать, как увеличивается или уменьшается число на N%.

Зачастую даются задания, да и в жизни нужно узнать, чему будет равно число, увеличенное на заданное количество процентов. К примеру, дано число Х. Нужно узнать, чему будет равно значение Х, если его увеличить, допустим, на 40%.

Сначала нужно перевести 40% в дробное число (40/100). Итак, результатом увеличения числа Х станет: Х + 40% ∙ Х= (1+40/100) ∙ Х = 1,4 ∙ Х.

Если вместо Х подставить любое число, возьмем, к примеру, 100, тогда все выражение будет равно: 1,4 ∙ Х = 1,4 ∙ 100 = 140.

Примерно тот же принцип используется и при уменьшении числа на заданное число процентов. Нужно провести расчеты: Х – Х ∙ 40% = Х ∙ (1-40/100) = 0,6 ∙ Х. Если величина равна 100, тогда 0,6 ∙ Х = 0,6 . 100 = 60.

Встречаются задания, где нужно узнать, на сколько процентов увеличилось число.

К примеру, дана задача: Машинист ехал по одному участку пути со скоростью 80 км/ч. На другом участке скорость поезда возросла до 100 км/ч. На сколько процентов возросла скорость поезда?

Решение:

Предположим, 80 км/ч – 100%. Тогда производим расчеты: (100% ∙ 100 км/ч) / 80 км/ч= 1000 : 8 = 125%. Получается, что 100 км/ч – это 125%. Чтобы узнать, на сколько увеличилась скорость, нужно вычислить: 125% – 100% = 25%.

Ответ: на 25% увеличилась скорость поезда на втором участке.

Пропорция

Нередки случаи, когда необходимо решить задачи на проценты, используя пропорцию. На самом деле этот метод нахождения результата в значительной мере облегчает задачу учащимся, преподавателям и не только.

Итак, что такое пропорция? Под этим термином понимается равенство двух отношений, которые можно выразить следующим образом: А/В = С/D.

В учебниках математики значится такое правило: произведение крайних членов равняется произведению средних. Это выражается следующей формулой: А х D = В х С.

Благодаря этой формулировке, можно вычислить любое число, если три других члена пропорции известны. К примеру, А – неизвестное число. Чтобы его найти, нужно

При решении задач методом пропорции необходимо понимать, от какого числа брать проценты. Бывают случаи, когда доли нужно взять от разных величин. Сравните:

1. После окончания распродажи в магазине стоимость футболки возросла на 25% и составила 200 рублей. Какова была стоимость во время распродажи.

Решение:

В данном случае нужно величина 200 рублей соответствует 125% от первоначальной (распродажной) цены футболки. Тогда, чтобы узнать ее стоимость во время распродажи, нужно (200 х 100) : 125. Получится 160 рублей.

2. На планете Виценция 200 000 жителей: люди и представители гуманоидной расы Наави. Наави составляют 80% от всего населения Виценции. Из людей 40% заняты обслуживанием рудника, остальные добывают тетаниум. Сколько людей добывают тетаниум?

Решение:

В первую очередь нужно найти в численном виде количество людей и количество Наави. Так, 80% от 200 000 будет равняться 160 000. Столько представителей гуманоидной расы проживает на Виценции. Количество людей, соответственно, равняется 40 000. Из них 40%, то есть 16 000, обслуживают рудник. Значит, 24 000 людей занимаются добычей тетаниума.

Многократное изменение числа на некоторое количество процентов

Когда уже понятно, что такое процент, нужно изучить понятие абсолютного и относительного изменения. Под абсолютным преобразованием понимается увеличение числа на конкретное число. Так, Х возрос на 100. Что бы вместо Х ни подставили бы, все равно это число возрастет на 100 : 15 + 100; 99,9 + 100; а + 100 и т. д.

Под относительным изменением понимается возрастание величины на некоторое число процентов. Допустим, Х увеличился на 20%. Это значит, что Х будет равен: Х+Х∙20%. Относительное изменение подразумевается каждый раз, когда заходит речь об увеличении на половину или треть, уменьшении на четверть, возрастании на 15% и т. д.

Существует еще один важный момент: если величину Х увеличить на 20%, а затем еще на 20%, то в результате общее возрастание составит 44%, но никак не 40%. Это видно из следующих расчетов:

1. Х + 20% ∙ Х = 1,2 ∙ Х

2. 1,2 ∙ Х + 20% ∙ 1,2 ∙ Х = 1,2 ∙ Х + 0,24 ∙ Х = 1,44 ∙ Х

Это показывает, что Х возрос на 44%.

Примеры задач на проценты

1. Сколько процентов от числа 36 составляет число 9?

Решение:

По формуле нахождения процента от числа, нужно 9 умножить на 100 и поделить на 36.

Ответ: число 9 составляет 25% от 36.

2. Вычислить число С, которое составляет 10% от 40.

Решение:

По формуле нахождения числа по его проценту, нужно 40 умножить на 10 и результат разделить на 100.

Ответ: число 4 составляет 10% от 40.

3. Первый партнер вложил в бизнес 4500 рублей, второй – 3500 рублей, третий – 2000 рублей. Они получили прибыль 2400 рублей. Прибыль они разделили поровну. Сколько в рублях потерял первый партнер, по сравнению с тем, сколько бы он получил, если бы они разделили доход согласно проценту вложенных средств?

Решение:

Итак, вместе они вложили 10 000 рублей. Доход на каждого составил равную долю по 800 рублей. Чтобы узнать, сколько должен был получить первый партнер и сколько он, соответственно, потерял, нужно узнать процент вложенных средств. Затем нужно узнать, сколько в рублях прибыли составляет этот вклад. И последнее – вычесть 800 рублей из полученного результата.

Ответ: первый партнер потерял 280 рублей при разделе прибыли.

Немного экономики

Сегодня довольно популярный вопрос – оформление кредита на определенный срок. Но как выбрать выгодный заем, чтобы не переплачивать? Во-первых, нужно посмотреть процентную ставку. Желательно, чтобы этот показатель был как можно ниже. Затем следует применить формулу расчета процентов по кредиту.

Как правило, на размер переплаты влияет сумма долга, процентная ставка и способ погашения. Различают аннуитетные и дифференцированные платежи. В первом случае кредит погашается равными долями каждый месяц.

Тут же сумма, которая перекрывает основной заем, растет, а стоимость процентов постепенно уменьшается. Во втором случае кредитозаемщик выплачивает постоянные суммы на погашение займа, к которым прибавляются проценты на остаток основного долга.

Ежемесячно общая сумма выплат будет уменьшаться.

Теперь нужно рассмотреть оба способа погашения кредита. Так, при аннуитетном варианте сумма переплаты будет выше, а при дифференциальном – сумма первых платежей. Естественно, условия кредита одинаковы для обоих случаев.

Заключение

Итак, проценты. Как считать их? Достаточно просто. Однако иногда они могут вызвать затруднения. Эту тему начинают изучать еще в школе, но она настигает всех в сфере кредитов, депозитов, налогов и т. д. Поэтому желательно вникнуть в суть данного вопроса. Если все же не получается провести расчеты, есть масса онлайн-калькуляторов, которые помогут справиться с поставленной задачей.

Источник: https://FB.ru/article/147293/chto-takoe-protsent-formula-protsentov-protsentyi---kak-schitat

Вам нужно это знать
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: